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Éditorial  

Le mot Anyasa prononcé Anyásã, à ne pas confondre avec ahֿכhlõ, désigne en éwé 

« intelligence » ou « connaissance ». Dans les textes bibliques, anyásã est mis en 

rapport synonymique avec núnya « savoir ». Pour le caractère scientifique des 

travaux et la dimension universelle des recherches, le vocable a été retenu pour 

nommer cette Revue des Lettres et Sciences humaines que le Laboratoire de 

Recherche sur la Dynamique des Milieux et des Sociétés (LARDYMES) se propose 

de faire paraître deux numéros par an. La naissance de cette revue scientifique 

s’explique par le besoin pressant de pallier le déficit de structure de publication 

spécialisés en Lettres et Sciences humaines dans les universités francophones de 

l’Afrique. C’est précisément pour parvenir à cette vision holistique de la recherche 

(et non seulement de ses résultats, dont les plus évidents sont les publications, mais 

aussi de son contexte), que nous éditons depuis 2014 la revue Anyasa afin que 

chaque chercheur en sciences sociales trouve désormais un espace pour diffuser les 

résultats de ses travaux de recherche et puisse se faire évaluer pour son inscription 

sur les différentes listes d’aptitudes des grades académiques de son université. 

                                                                 

Charte d'éthique  

Pour veiller à l’intégrité des travaux et de la diffusion des recherches scientifiques, 

la revue Anyasa applique les règles éthiques de la présente charte. Nous 

encourageons les membres du comité scientifique et de lecture, les contributeurs et 

les évaluateurs à les respecter. 

Engagements de la revue 

Le comité de rédaction a pour priorité l’amélioration de la revue anyasa, ainsi que 

la publication et la diffusion en ligne d’un contenu scientifique concis, exigent et 

éthique.  

Rôles des évaluateurs  

Les évaluateurs sont sélectionnés pour leur expertise scientifique. Ils sont chargés 

d’évaluer les manuscrits sur leur seul contenu, sans distinction de race, de sexe, de 

convictions religieuses, de nationalité, d’affiliation universitaire. Les avis rendus 

par les évaluateurs doivent être objectifs. Les évaluateurs sont tenus de signaler 

tous les articles ayant un rapport de similitude avec l’article soumis à la revue.  

Publication  

Les auteurs autorisent la diffusion de leur article au format papier et numérique sur 

le site web de la revue. Les auteurs garantissent à l’éditeur de l’originalité de leur 

contribution et lui assurent la jouissance entière et libre des droits ainsi cédés. Si 

leur article est co-signé par plusieurs auteurs, l’auteur principal doit être assuré de 

l’accord des co-auteurs au regard de la cession de droits. Les auteurs s’engagent 

également à avoir pris soin d’éviter tout plagiat. 
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AAVVIISS  AAUUXX  AAUUTTEEUURRSS  

1. Note aux contributeurs  

« ANYASA » revue des lettres et sciences humaines, publie des articles originaux, rédigés 

en français, non publiés auparavant et non soumis pour publication dans une autre revue. 

Les normes qui suivent sont conformes à celles adoptées par le Comité Technique 

Spécialisé (CTS) de Lettres et sciences humaines/CAMES (cf. dispositions de la 38e 

session des consultations des CCI, tenue à Bamako du 11 au 20 juillet 2016). Les 

contributeurs doivent s’y conformer.  

1.1. Les manuscrits  

Un projet de texte soumis à évaluation, doit comporter un titre (Times New Romans, taille 

12, Lettres capitales, Gras), la signature (Prénom(s) et NOM (s) de l’auteur ou des auteurs, 

l’institution d’attache), l’adresse électronique de (des) auteur(s), le résumé en français (250 

mots), les mots-clés (cinq), le résumé en anglais (du même volume), les keywords (même 

nombre que les mots-clés). Le résumé doit synthétiser la problématique, la méthodologie et 

les principaux résultats. 

Le manuscrit doit respecter la structuration habituelle du texte scientifique : Introduction 

(Problématique, Hypothèse compris) ; Approche méthodologie ; Résultats ; Analyse des 

Résultats ; Discussion ; Conclusion ; Références bibliographiques (s’il s’agit d’une 

recherche expérimentale ou empirique).  

Les notes infrapaginales, numérotées en chiffres arabes, sont rédigées en taille 10 (Times 

New Roman). Réduire au maximum le nombre de notes infrapaginales. Ecrire les noms 

scientifiques et les mots empruntés à d’autres langues que celle de l’article en italique 

(Adansonia digitata). 

Le volume du projet d’article (texte à rédiger dans le logiciel word, Times New Romans, 

taille 12, interligne 1.5) doit être de 30 000 à 40 000 caractères (espaces compris).  

Les titres des sections du texte doivent être numérotés de la façon suivante :  

1. Premier niveau, premier titre (Times 12 gras)  

1.1. Deuxième niveau (Times 12 gras italique)  

1.2.1. Troisième niveau (Times 11 gras, italique)  

1.2.2. Les illustrations  

Les tableaux, les cartes, les figures, les graphiques, les schémas et les photos doivent être 

numérotés (numérotation continue) en chiffres arabes selon l’ordre de leur apparition dans 

le texte. Ils doivent comporter un titre concis, placé au-dessus de l’élément d’illustration 

(centré). La source (centrée) est indiquée en-dessous de l’élément d’illustration (Taille 10). 

La source (centrée) est indiquée en dessous de l’élément d’illustration (Taille 10).  Ces 

éléments d’illustration doivent être : annoncés, insérés puis commentés dans le corps du 

texte.  

La présentation des illustrations : figures, cartes, graphiques, etc. doit respecter le miroir de 

la revue. Ces documents doivent porter la mention de la source, de l’année et de l’échelle 

(pour les cartes).  

2. Notes et références  

2.1. Les passages cités sont présentés entre guillemets. Lorsque la phrase citant et la citation 

dépasse trois lignes, il faut aller à la ligne, pour présenter la citation (interligne 1) en retrait, 

en diminuant la taille de police d’un point.  
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2.2. Les références de citation sont intégrées au texte citant, selon les cas, ainsi qu’il suit :  

- Initiale (s) du Prénom ou des Prénoms et Nom de l’auteur, année de publication, 

pages citées (B. A. Sy. 2008, p. 18) ;  

- Initiale (s) du Prénom ou des Prénoms et Nom de l’Auteur (année de publication, 

pages citées).  

Exemples : 

- En effet, le but poursuivi par M. Ascher (1998, p. 223), est « d’élargir l’histoire 

des mathématiques de telle sorte qu’elle acquière une perspective multiculturelle 

et globale (…) »  

- Pour dire plus amplement ce qu’est cette capacité de la société civile, qui dans son 

déploiement effectif, atteste qu’elle peut porter le développement et l’histoire, S. 

B. Diagne (1991, p. 2) écrit  

Qu’on ne s’y trompe pas : de toute manière, les populations ont toujours su opposer à la 

philosophie de l’encadrement et à son volontarisme leurs propres stratégies de 

contournements. Celles-là, par exemple, sont lisibles dans le dynamisme, ou à tout le 

moins, dans la créativité dont sait preuve ce que l’on désigne sous le nom de secteur 

informel et à qui il faudra donner l’appellation positive d’économie populaire. - Le 

philosophe ivoirien a raison, dans une certaine mesure, de lire, dans ce choc déstabilisateur, 

le processus du sous-développement. 

Ainsi qu’il le dit : Le processus du sous-développement résultant de ce choc est vécu 

concrètement par les populations concernées comme une crise globale : crise socio-

économique (exploitation brutale, chômage permanent, exode accéléré et douloureux), mais 

aussi crise socioculturelle et de civilisation traduisant une impréparation socio-historique et 

une inadaptation des cultures et des comportements humains aux formes de vie imposées 

par les technologies étrangères. (S. Diakité, 1985, p. 105).  

2.3. Les sources historiques, les références d’informations orales et les notes explicatives 

sont numérotées en continue et présentées en bas de page.  

2.4. Les divers éléments d’une référence bibliographique sont présentés comme suit : Nom 

et Prénom (s) de l’auteur, Année de publication, Titre, Lieu de publication, Editeur, pages 

(p.) pour les articles et les chapitres d’ouvrage. Le titre d’un article est présenté entre 

guillemets, celui d’un ouvrage, d’un mémoire ou d’une thèse, d’un rapport, d’une revue ou 

d’un journal est présenté en italique. Dans la zone Editeur, on indique la Maison d’édition 

(pour un ouvrage), le Nom et le numéro/volume de la revue (pour un article). Au cas où un 

ouvrage est une traduction et/ou une réédition, il faut préciser après le titre le nom du 

traducteur et/ou l’édition (ex : 2nde éd.).  

2.5. Les références bibliographiques sont présentées par ordre alphabétique des noms 

d’auteur.  

Par exemple :  

Références bibliographiques  

AMIN Samir, 1996, Les défis de la mondialisation, Paris, L’Harmattan, société, Paris, 

Gallimard, 352 p. 

BERGER Gaston, 1967, L’homme moderne et son éducation, Paris, PUF. DIAGNE 

Souleymane Bachir, 2003, « Islam et philosophie. Leçons d’une rencontre », Diogène, 202, 

p. 145-151.  

DIAKITE Sidiki, 1985, Violence technologique et développement. La question africaine du 

développement, Paris, L’Harmattan, 156 p. 
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ÉTUDE COMPARATIVE DES ALGORITHMES DE MACHINE LEARNING 

(RF, SVM ET CART) POUR LA CARTOGRAPHIE DE L’OCCUPATION DU 

SOL PAR TÉLÉDÉTECTION OPTIQUE DANS LA ZONE DU SINE SALOUM 

(SENEGAL) 

Labaly TOURÉ, Amandine Carine NJEUGEUT MBIAFEU, Marc YOUAN TA, 

Moussa SOW et Jean Patrice JOURDA  

Université du Sine Saloum Elhadj Ibrahima Niass, Sénégal, Centre Universitaire de Recherche 

Appliquée en Télédétection (CURAT), Unité de Formation et de Recherche des Sciences de la 

Terre et des Ressources Minières (UFR-STRM), Université Félix Houphouët-Boigny d’Abidjan, 

Côte d’Ivoire, Université́ Gaston Berger de Saint-Louis (UGB), Sénégal 

 

Résumé : Les paysages du Sine Saloum, situés dans les régions de Kaffrine, Fatick et 

Kaolack, ont subi d’importantes transformations sous l’effet des activités humaines et du 

climat, notamment après les sécheresses des années 1980. Ces mutations ont modifié 

l’organisation spatiale et les usages du sol, entraînant une reconversion socio-économique 

des populations locales. La télédétection optique, grâce aux images multispectrales, 

constitue un outil essentiel pour analyser ces dynamiques et suivre l’évolution de 

l’occupation et des usages des terres. Cette étude vise à cartographier l’occupation du sol 

dans le Sine Saloum en exploitant des images Sentinel-2 et des algorithmes de machine 

learning. Une classification supervisée a été réalisée avec Random Forest (RF), 

Classification and Regression Trees (CART) et Support Vector Machines (SVM) afin 

d’identifier six classes : habitat, sol nu, mangrove, zones agricoles, surfaces en eau et 

terres salées. Les résultats révèlent que RF et CART offrent des précisions globales 

élevées (99,70 % et 99,59 %), surpassant SVM (97,56 %). Les valeurs de l’indice Kappa 

(>0,81) indiquent une excellente concordance avec les données de validation. Toutefois, 

SVM présente des limitations, notamment une faible précision du producteur pour les 

sols nus et des erreurs accrues dans certaines classes. Cette étude confirme la pertinence 

de RF et CART pour la classification des images Sentinel-2 dans le Sine Saloum pour 

l’occupation des sols et suggère des améliorations pour SVM. Elle souligne l’apport des 

algorithmes de machine learning pour la cartographie de l’occupation du sol et propose 

des pistes d’optimisation pour de futures applications en télédétection optique. 

Mots-clés :  Machine learning, occupation du sol, télédétection, Sentinel-2, Sine Saloum. 

Abstract: The landscapes of the Sine Saloum, in the regions of Kaffrine, Fatick and 

Kaolack, have undergone major transformations as a result of human activity and climate, 

particularly after the droughts of the 1980s. These changes have altered spatial 

organisation and land use, leading to socio-economic conversion among local 

populations. Optical remote sensing, using multispectral images, is an essential tool for 

analysing these dynamics and monitoring changes in land use and occupation. The aim of 

this study is to map land cover in the Sine Saloum using Sentinel-2 images and machine 
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learning algorithms. A supervised classification was carried out using Random Forest 

(RF), Classification and Regression Trees (CART) and Support Vector Machines (SVM) 

to identify six classes: habitat, bare soil, mangroves, agricultural areas, water surfaces and 

salt land. The results show that RF and CART offer high overall accuracies (99.70% and 

99.59%), outperforming SVM (97.56%). The Kappa index values (>0.81) indicate 

excellent agreement with the validation data. However, SVM has limitations, including 

low producer accuracy for bare soil and increased errors in some classes. This study 

confirms the relevance of RF and CART for land cover classification of Sentinel-2 

images in the Sine Saloum and suggests improvements for SVM. It underlines the 

contribution of machine learning algorithms for land cover mapping and suggests 

avenues of optimisation for future applications in optical remote sensing. 

Keywords : Machine learning, land use, remote sensing, Sentinel-2, Sine Saloum 

Introduction 

La cartographie de l'occupation du sol est un outil crucial pour la gestion durable des 

ressources naturelles, particulièrement dans des régions écologiquement sensibles comme 

le Sine Saloum au Sénégal. Située au carrefour de dynamiques climatiques et 

anthropiques complexes, cette région a connu des transformations significatives de ses 

paysages au cours des dernières décennies (E. F. Lambin, H. J. Geist et E. Lepers, 2003, 

p. 205‑41). Les sécheresses des années 1980 ont été exacerbées par la pression sur les 

terres, entraînant des mutations spatiales et une réorganisation des usages du sol (I. 

Savane, K. M. Coulibaly et P. Gioan, 2001, p. 37‑42). Aujourd'hui, dans un contexte de 

changement climatique global et de reconversion socioprofessionnelle, la nécessité de 

disposer d'outils précis et efficaces pour suivre ces transformations n'a jamais été aussi 

pressante. 

Cependant, la diversité des paysages et des usages du sol dans le Sine Saloum pose un 

défi majeur pour la cartographie précise de l'occupation du sol. L'application des 

algorithmes de classification supervisée pour traiter les images satellites, en particulier 

celles fournies par les capteurs Sentinel-2, offre une opportunité de surmonter ce défi (M. 

Drusch et al., 2012, p. 25‑36). Néanmoins, la performance de ces algorithmes varie en 

fonction de la complexité des paysages à cartographier, de la nature des données 

disponibles mais aussi de l'étendue de la zone d'étude. 

Ainsi, la problématique centrale de cette étude repose sur l'évaluation comparative de 

trois algorithmes d'apprentissage automatique - Random Forest (RF), Support Vector 

Machine (SVM) et Classification and Regression Tree (CART) - dans la cartographie de 

l'occupation du sol dans la zone du Sine Saloum. Il s’agit d’analyser les apports de ces 

méthodes de claissification et de voir laquelle peut donner plus de precision pour 

l’occupation des sols.  Cette approche comparative est essentielle, car des études 

précédentes ont souvent privilégié un seul algorithme pour la classification des images 

satellitaires, comme le Random Forest ou le SVM (M. Belgiu et L. Drăguţ, 2016, p. 
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24‑31), sans nécessairement tenir compte des performances relatives des autres méthodes 

dans des environnements géographiques complexes. La littérature montre que le RF a été 

largement utilisé pour sa robustesse et sa capacité à gérer des données 

multidimensionnelles (V. F. Rodriguez-Galiano et al., 2012, p. 93‑104), tandis que le 

SVM est reconnu pour sa précision dans la séparation de classes avec des distributions 

complexes (G. Mountrakis et al., 2011, p. 247‑59). Cependant, en fonction des 

caractéristiques spécifiques du paysage, chaque algorithme peut présenter des 

performances variables selon les classes retenues. C’est pourquoi une comparaison est 

cruciale pour déterminer l’algorithme le plus adapté aux particularités spatiales et 

environnementales du Sine Saloum. 

La région du Sine Saloum au Sénégal est une zone géographique d'une importance 

écologique, culturelle et économique notable. Située entre les latitudes 13.5° et 14.5° N, 

et les longitudes 16° et 17.5° O, elle s'étend sur la côte ouest du Sénégal, entre les régions 

de Thiès et de Ziguinchor, avec l'océan Atlantique comme frontière occidentale, créant 

une juxtaposition unique de zones côtières et d'estuaires (Figure 1). Cette région, située à 

environ 150 km au sud de Dakar et à la limite sud de Joal, est caractérisée par un 

labyrinthe d'îles et de rias. Elle constitue la marge septentrionale de la mangrove des 

Rivières du Sud (J. Bethemont, 2000, p. 95), un écosystème qui s'étend de manière 

continue le long de la côte atlantique de l’Afrique jusqu’au Libéria.  

Le territoire étudié englobe à la fois des zones administratives et éco-géographiques, 

notamment l’ancien bassin arachidier de Kaolack, qui occupe une large portion du Sine 

Saloum. Cette région abrite des activités socio-économiques diversifiées où l’agriculture, 

la pêche et l’élevage jouent un rôle prépondérant. Le delta du Saloum, riche en 

biodiversité, est notamment reconnu pour ses paysages de mangroves (N. Moreau, 1991, 

p. 300). Ces écosystèmes sont composés de formations végétales dominées par les 

palétuviers, organisées en zonage depuis les eaux libres vers les terres fermes. Les 

espèces de mangroves présentes incluent Rhizophora racemosa et R. harisonnii, soumises 

à l'influence directe des marées, ainsi que Rhizophora mangle, Avicennia africana, 

Laguncularia racemosa et Conocarpus erectus, avec une présence variable selon leur 

tolérance aux marées et aux conditions de salinité.  

Le Sine Saloum se distingue par une mosaïque de paysages comprenant mangroves, 

savanes, rivières et îles, formant un réseau complexe d'estuaires et de lagunes qui abrite 

une biodiversité exceptionnelle. Les mangroves, en particulier, jouent un rôle crucial en 

tant que nurserie pour de nombreuses espèces marines, tandis que la faune terrestre 

comprend une diversité d’oiseaux, de mammifères et de reptiles adaptés aux conditions 

écologiques spécifiques de la région (D. M. Alongi, 2008, p. 1‑13). 
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         Figure 1 : Situation géographique de la zone d’étude 

 

L'économie locale est dominée par la pêche, une activité vitale pour les communautés 

dépendantes des ressources marines et estuariennes, mais aussi par l'agriculture, l’élevage 

et le tourisme. Cependant, la région du Sine Saloum fait face à des défis majeurs, 

notamment la dégradation de l’environnement, la surexploitation des ressources marines 

et les impacts des changements climatiques. La mise en œuvre d'initiatives de 

conservation, de gestion durable des ressources et de sensibilisation est essentielle pour 

préserver cet écosystème fragile et garantir la durabilité à long terme de la région. Notre 

terrain d'étude comprend les trois régions administratives de Kaolack, Fatick et Kaffrine 

1. Approche méthodologie 

L’approche retenue pour cartographier l’occupation du sol en 2024 par machine learning 

depuis google earth engine, repose sur la démarche suivante qui va de la préparation des 

données à la classification (Figure 2). 
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Figure 2 : Processus de cartographie des unités d’occupation du sol par les algorithmes de 

Machine Learning 

 

 
 

1.1. Acquisition des images 

 

Les données utilisées dans cette étude comprennent des images multispectrales Sentinel-2 

de l'année 2024, qui offrent une résolution spatiale de 10 mètres. Ces images comportent 

des bandes du mulispectral, couvrant des longueurs d'onde spécifiques, particulièrement 

adaptées à la cartographie de l'occupation du sol, chacune apportant des informations 

précieuses sur les caractéristiques de la végétation, des surfaces en eau, des sols nus, et 

d'autres éléments du paysage. 

En complément des images optiques, cette étude intègre également un modèle numérique 

de terrain (MNT) issu des données Alos PALSAR, initialement à une résolution de 12,5 

mètres et rééchantillonné à 10 mètres pour assurer une meilleure cohérence avec les 

images Sentinel-2. Ce MNT fournit une représentation détaillée de la topographie de la 

région du Sine Saloum, ajoutant une dimension altimétrique qui permet d'améliorer la 

précision de la classification des différentes classes d'occupation du sol. 

L'intégration de ces données multispectrales et topographiques permet d'exploiter 

pleinement la richesse des informations disponibles, tout en bénéficiant de la haute 

résolution spatiale offerte par les deux ensembles de données. Cette combinaison 
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constitue une base solide pour l'application des algorithmes d'apprentissage automatique 

dans le cadre de cette étude comparative (M. Li et al., 2014, p. 389‑411).  

 

1.2. Préparation des données 

1.2.1. Prétraitement des images 

Pour obtenir des résultats fiables, des corrections géométriques et radiométriques ont été 

effectuées sur les images Sentinel-2. Concrètement, cela inclut la rectification 

géométrique pour aligner les images sur un système de coordonnées géographiques 

standard et la correction radiométrique pour ajuster les variations de luminosité causées 

par l'atmosphère et les conditions d'éclairage. Google Earth Engine permet la sélection 

des images en fonction de critères de localisation, de période, et de couverture nuageuse. 

La présence importante de nuages peut altérer la qualité des résultats en masquant des 

parties de l'image. Ainsi, pour cette étude, nous avons utilisé le composite annuel de 2024 

de Sentinel-2 (image médiane), sélectionné pour sa couverture nuageuse inférieure à 1% 

afin de minimiser ces effets (M. A. C. Njeugeut et al., 2023, p. 310‑32). 

 
1.2.2. Création de l’image composite 

L'intégration de multiples types de données dans une image composite permet de capturer 

une gamme plus large de caractéristiques spectrales et spatiales, ce qui améliore la 

capacité de discrimination entre différentes classes d'occupation du sol (S. L. Powell et 

al., 2007; G. M. Foody, 2002, p. 185‑201). 

Les données utilisées pour cette étude proviennent des images multispectrales Sentinel-2 

de l'année 2024, offrant une résolution spatiale de 10 mètres. L'image composite finale est 

constituée de l'ensemble des bandes multispectrales rééchantillonnées, des indices 

spectraux (NDVI, NDWI, SAVI), des dérivés topographiques (pente, relief), et des trois 

premières composantes principales de l'ACP. Cette combinaison de variables permet une 

classification robuste et précise de l'occupation du sol en exploitant à la fois les 

informations spectrales, topographiques et statistiques. 

Les bandes spectrales sélectionnées incluent le bleu (B2 : 490 nm), le vert (B3 : 560 nm), 

le rouge (B4 : 665 nm), le proche infrarouge (B8 : 842 nm), ainsi que deux bandes du 

moyen infrarouge (B11 : 1610 nm et B12 : 2190 nm), rééchantillonnée à une résolution 

de 10 mètres pour garantir l'uniformité des données depuis Google earth engine, ce qui 

est important pour une classification précise. Ces bandes sont particulièrement pertinentes 

pour l'analyse de la végétation, des surfaces en eau et des sols nus, qui sont des 

composantes clés de l'occupation du sol dans la région du Sine Saloum. Les bandes du 

visible (bleu, vert et rouge) permettent une discrimination fine des différents types de 

couverture terrestre et des caractéristiques des surfaces, tandis que les bandes du proche 

infrarouge sont sensibles à la réflectance de la végétation, et les bandes du moyen 

infrarouge sont efficaces pour distinguer les sols nus, l'humidité des sols et les zones en 

eau (M. Drusch et al., 2012, p. 25‑36). L'intégration des paramètres topographiques 
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dérivés du modèle numérique de terrain (MNT) Alos PALSAR rééchantillonné à 10m, 

ajoute une dimension supplémentaire à la classification de l'occupation du sol.  

Les indices spectraux et les 3 premières composantes de l’analyse en composante 

principale intégrées dans l’image composite jouent un rôle crucial dans la classification 

de l'occupation du sol en fournissant des informations supplémentaires sur l'état de la 

végétation, la présence d'eau, et les conditions du sol (A. R. Huete, 1988, p. 295‑309). Le 

NDVI est largement utilisé pour évaluer la densité et l'état de la végétation, le NDWI est 

utilisé pour détecter les surfaces en eau et le SAVI est particulièrement efficace dans les 

zones où la végétation est clairsemée, et où l'exposition du sol pourrait fausser les 

résultats du NDVI. L’ACP1 capture les variations dominantes dans les données, souvent 

associées à la végétation et aux sols, l’ACP2 souligne les différences entre les surfaces en 

eau et les autres types de couverture et l’ACP3 fournit une perspective supplémentaire, 

souvent liée aux variations topographiques. 

Cette méthodologie détaillée offre une approche rigoureuse pour la classification de 

l'occupation du sol dans la zone du Sine Saloum, intégrant des données multispectrales, 

des indices spectraux, et des variables topographiques, tout en optimisant la réduction de 

la dimensionnalité à travers l'ACP. Les algorithmes de machine learning utilisés dans 

cette étude exploitent cette riche image composite pour fournir une classification précise 

et informée des différentes classes d'occupation du sol. 

L’utilisation des différentes bandes et de néocanaux a permis de réaliser une image 

composite. Cependant, les bandes n’ont pas les mêmes poids et leur contribution aux 

résultats de la classification varient en fonction de leurs paramètres spectraux et des 

classes d’occupation (Figure 3). 

1.3. Identification et nomenclature des classes d’occupation du sol 

1.3.1. Choix des classes d’occupation du sol 

Pour une classification précise et représentative de l'occupation du sol dans la région du 

Sine Saloum, nous avons sélectionné huit classes d'occupation du sol : zone marécageuse, 

mangrove, végétation naturelle, habitat, terre salée, agriculture, eau, et sols nus (Tableau 

1). Le choix de ces classes est fondé sur la différentiabilité des signatures spectrales et 

leur capacité à représenter fidèlement les caractéristiques écologiques et fonctionnelles de 

la zone d’étude : 

- Zone marécageuse 

Les zones marécageuses, souvent caractérisées par des sols saturés d'eau et une 

végétation émergente, présentent des signatures spectrales distinctes en raison de leur 

forte teneur en eau et de la combinaison unique de plantes aquatiques et de sols boueux. 

Les indices comme le NDWI (Normalized Difference Water Index) sont particulièrement 

efficaces pour détecter ces zones. 
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- Mangrove 

Les mangroves sont des écosystèmes côtiers importants qui fournissent des habitats pour 

diverses espèces marines et terrestres et protègent les côtes contre l'érosion. Les 

mangroves possèdent des signatures spectrales distinctives en raison de la présence de 

palétuviers avec des canopées denses et des caractéristiques d'humidité élevées. Les 

indices comme le NDVI (Normalized Difference Vegetation Index) et le SAVI (Soil 

Adjusted Vegetation Index) permettent de différencier efficacement les mangroves des 

autres types de végétation. 

- Végétation naturelle 

La végétation naturelle, incluant les forêts et les broussailles, a des signatures spectrales 

distinctes grâce à la variation de la biomasse végétale et de la structure de la canopée. Le 

NDVI est particulièrement utile pour identifier et différencier cette classe en raison de la 

forte réflectance dans le proche infrarouge. Cette classe représente les zones non 

perturbées ou moins influencées par l'activité humaine, essentielles pour la conservation 

de la biodiversité. 

- Habitat 

Les zones urbaines ou les habitats humains présentent des signatures spectrales distinctes 

en raison de la présence de matériaux bâtis, de routes et d'autres surfaces artificielles. Ces 

surfaces ont des propriétés spectrales différentes des surfaces naturelles, ce qui est 

détectable avec les bandes spectrales visibles et du proche infrarouge. Les habitats 

humains comprennent les infrastructures et les zones résidentielles qui modifient le 

paysage naturel et influencent les processus écologiques. 

- Terre Salée 

Les terres salées, souvent présentes dans les zones côtières et les salines, ont des 

signatures spectrales uniques en raison de leur haute teneur en sels et leur texture 

superficielle. Les indices comme le SAVI et les dérivés du MNT (modèle numérique de 

terrain) permettent de détecter ces zones. Ces terres sont influencées par des conditions 

salines spécifiques, impactant la végétation et l'utilisation du sol. 

- Agriculture 

Les terres agricoles, telles que les champs cultivés, présentent des signatures spectrales 

différentes en raison de la gestion régulière des sols et des variations saisonnières dans la 

végétation. Les indices spectraux comme le NDVI peuvent être utilisés pour identifier les 

cultures et les zones de culture. L'agriculture représente une utilisation humaine intensive 

des sols et a des implications importantes pour la gestion des ressources naturelles et la 

conservation. 

- Eau 

Les surfaces d'eau, telles que les lacs, les rivières et les étangs, ont des signatures 

spectrales distinctes en raison de leur faible réflectance dans le proche infrarouge et leur 
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haute réflectance dans le bleu et le vert. Le NDWI est particulièrement efficace pour 

identifier les surfaces aquatiques. Les zones aquatiques jouent un rôle vital dans les 

écosystèmes, fournissant de l'habitat pour la faune aquatique et influençant le climat 

local. 

- Sols nus 

Les sols nus présentent des signatures spectrales distinctes en raison de leur texture et de 

leur absence de couverture végétale. Les bandes spectrales visibles et les indices 

spectraux permettent de différencier les sols nus des autres types de couverture terrestre. 

Les sols nus, souvent issus de déforestation ou de dégradation, ont des implications sur 

l'érosion des sols et la perte de biodiversité. 

Les huit classes d'occupation du sol choisies pour la classification du Sine Saloum sont 

basées sur la différentiabilité des signatures spectrales et leur capacité à représenter au 

mieux les caractéristiques écologiques et fonctionnelles de la région. Chaque classe a été 

sélectionnée en raison de sa pertinence écologique et de sa signature spectrale unique, ce 

qui permet une classification précise et significative de l'occupation du sol. La sélection 

de ces classes assure une couverture complète des divers types de couverture terrestre 

présents dans la région, facilitant ainsi une analyse détaillée et une gestion efficace des 

ressources naturelles.  

 

Tableau 1 : Identification et nomenclature des classes d’occupation du sol 

Classe 

d’OCS 

Composition colorée 

Sentinel-2 (B8,B12,B4) 

Images de haute 

résolution 

Classe 

d’OCS 

Composition colorée 

Sentinel-2 (B8,B12,B4) 
Images de haute 

résolution 

Zone 

marécageu

se 

  

Sols nus 

  

Zones 

salées 

  

Eau 

  

Habitat 

  

Mangrov

e 

  

Végétation 

naturelle 

  

Agricultu

re 
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1.3.2. Echantillonnage des données  

Dans le cadre de la classification de l'occupation du sol pour la région du Sine Saloum, un 

échantillonnage rigoureux des données a été réalisé pour assurer la précision et la fiabilité 

des résultats. La procédure d'échantillonnage est détaillée comme suit : 

- des échantillons de données ont été collectés sur le terrain, et à partir des images 

de haute résolution et des images multispectrales Sentinel-2, incluant les indices 

spectraux (NDVI, NDWI, SAVI), les dérivés du modèle numérique de terrain 

(relief et pente), et les composantes principales issues de l'analyse en 

composantes principales (ACP) ;  

- ces échantillons ont été soigneusement sélectionnés pour représenter les huit 

classes d'occupation du sol : zone marécageuse, mangrove, végétation naturelle, 

habitat, terre salée, agriculture, eau, et sols nus. 

Les points d’échantillonnage sont choisis en fonction de leur représentativité par rapport 

aux différentes classes d’occupation du sol cartographiées (zones urbaines, agricoles, 

forestières, inondées, etc.). La méthode d'échantillonnage stratifiée aléatoire a été 

appliquée pour assurer une couverture homogène des différentes classes. 

Pour l’entraînement et la validation du modèle de classification, les échantillons ont été 

divisés en deux ensembles distincts : 

- Ensemble d'Entraînement (70%). Cet ensemble, représentant 70% des 

échantillons collectés, a été utilisé pour entraîner les modèles de classification. Les 

données d’entraînement sont essentielles pour ajuster les paramètres des algorithmes 

de machine learning (RF, SVM, CART) afin qu'ils apprennent à associer 

correctement les caractéristiques spectrales et topographiques aux classes 

d'occupation du sol définies. 

- Ensemble de Validation (30%) : Les 30% restants des échantillons ont été réservés 

pour la validation des modèles. Cet ensemble est crucial pour évaluer la performance 

des modèles entraînés en mesurant leur capacité à prédire correctement les classes 

d'occupation du sol sur des données qu'ils n’ont pas rencontrées lors de 

l’entraînement. Cette validation permet d’estimer la précision, le rappel, et la F-

mesure des classifications obtenues, offrant ainsi une mesure objective de la 

performance des modèles. 

Après la division des données, un processus de vérification a été réalisé pour s’assurer 

que les échantillons utilisés étaient correctement représentatifs des classes d'occupation 

du sol. Cette vérification implique la comparaison des échantillons avec des données de 

terrain ou des observations indépendantes pour confirmer leur exactitude et leur 

pertinence. 
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Le processus d'échantillonnage, de rééchantillonnage et de validation des données est 

fondamental pour assurer la qualité et la précision de la classification de l'occupation du 

sol. La division des données en ensembles d'entraînement et de validation, ainsi que la 

vérification rigoureuse des échantillons, garantissent que les résultats de la classification 

sont fiables et représentatifs des conditions réelles dans la région du Sine Saloum. 

1.4. Classification de l’occupation du sol 

La classification de l'occupation du sol est réalisée à l'aide de Google Earth Engine (GEE) 

en utilisant les algorithmes de machine learning Random Forest (RF), Support Vector 

Machine (SVM), et Classification and Regression Trees (CART).  

1.4.1 Random Forest (RF) 

Random Forest est un algorithme d'ensemble basé sur la construction de multiples arbres 

de décision. Chaque arbre est construit à partir d'un sous-ensemble aléatoire des données 

et des caractéristiques. Les prédictions de ces arbres sont agrégées pour produire la 

classification finale. RF est moins sensible au sur-apprentissage grâce à la diversité des 

arbres, ce qui le rend adapté à des données complexes et bruyantes (L. Breiman, 2001, p. 

5‑32). De plus, il permet d’évaluer l'importance relative des différentes variables (bandes 

spectrales, indices, dérivés topographiques) pour la classification, facilitant ainsi 

l’interprétation des résultats (M. Belgiu et L. Drăguţ, 2016, p. 24‑31). Enfin, RF fournit 

généralement une haute précision même dans des environnements de données 

hétérogènes (V. F. Rodriguez-Galiano et al., 2012, p. 93‑104). 

1.4.2 Support Vector Machine (SVM) 

SVM est un algorithme de classification qui cherche à maximiser la marge entre les 

classes en trouvant un hyperplan optimal dans un espace de caractéristiques de haute 

dimension. Les noyaux non linéaires, comme le noyau Radial Basis Function (RBF), 

peuvent être utilisés pour capturer des relations complexes entre les variables. SVM est 

particulièrement efficace pour des données avec des dimensions élevées, comme les 

indices spectraux et les composantes principales (C. J. C. Burges, 1998, p. 121‑67). Il 

peut utiliser des noyaux non linéaires pour modéliser des relations complexes entre les 

caractéristiques, et est très performant pour les classes minoritaires, ce qui est crucial dans 

des environnements diversifiés (G. Mountrakis et C. Ogole, 2011, p. 247‑59). 

1.4.3. Classification and Regression Trees (CART) 

CART construit des arbres de décision en divisant les données en sous-groupes basés sur 

les valeurs des caractéristiques. À chaque nœud de l’arbre, les données sont divisées de 

manière à minimiser une mesure de pureté, comme l'impureté de Gini ou l'entropie. Les 

résultats sont facilement interprétables sous forme d’arbres de décision, facilitant la 

compréhension des critères de classification (1998). CART peut gérer les valeurs 
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manquantes et les variables catégorielles sans nécessiter un prétraitement complexe, et il 

est bien adapté pour des relations non linéaires et des interactions complexes entre les 

variables (W. Loh, 2011, p. 14‑23). 

1.5. Validation des cartes 

L’approche méthodologique utilisée pour valider nos cartes est la validation croisée.La 

validation croisée est utilisée pour évaluer la performance des modèles. Les données sont 

divisées en ensembles de formation et de test multiples pour éviter le sur-apprentissage et 

garantir une évaluation robuste. 

1.5.1. Mission terrain 

La mission terrain vise à valider les résultats obtenus par télédétection à partir d’images 

satellitaires et à évaluer la précision des classifications cartographiques en croisant les 

données de terrain et les cartes d’occupation du sol. Cette validation permet de mesurer 

l’efficacité des algorithmes de classification automatique et d'identifier d'éventuelles 

erreurs. La mission terrain a été réalisée à l’aide d’un formulaire mobile online et offline, 

développé à partir de Kobotoolbox. Les données recueillies comprennent le type d’unité 

d’occupation du sol, l’emplacement géographique, des photos et une description. Sur 

chaque point échantillonné, des observations précises sont réalisées pour confirmer la 

classe d'occupation du sol identifiée par la cartographie. Une comparaison est réalisée 

entre les observations terrain et les résultats de la classification par télédétection. Une 

matrice de confusion est générée pour chaque période d’observation afin de mesurer la 

précision globale, la précision par classe, et l'indice de Kappa. Cela permet d'évaluer la 

performance des classifications et d'identifier les classes où des erreurs de classification 

sont fréquentes. 

1.5.2. Évaluation de la précision 

L’évaluation de la précision des algorithmes de classification est cruciale pour déterminer 

la fiabilité des résultats produits. Pour ce faire, plusieurs métriques sont utilisées, chacune 

fournissant des informations distinctes sur la performance des modèles. Voici une 

description détaillée des principales métriques utilisées pour évaluer la précision : 

▪ Précision globale 

La précision globale est la proportion de pixels correctement classifiés parmi tous les 

pixels classifiés dans l'ensemble de validation (Eq.1). 

 

Une haute précision globale indique que le modèle a bien classifié la majorité des pixels. 

Cependant, elle ne prend pas en compte les erreurs spécifiques aux classes et peut donc 

masquer des problèmes de classification dans certaines classes. 

(

1) 
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▪ Indice Kappa (κ) 

L’indice Kappa (Eq.2) mesure la concordance entre la classification prévue et la vérité 

terrain en tenant compte de la classification aléatoire. Il ajuste la précision globale pour 

les classifications correctes qui pourraient être dues au hasard. 

 

Où Po est la précision observée (précision globale) et Pe est la précision attendue 

(précision basée sur la distribution des classes). 

L’indice Kappa varie de -1 (classification totalement incorrecte) à 1 (classification 

parfaitement correcte). Un Kappa supérieur à 0.8 indique une excellente concordance, 

tandis qu’un Kappa inférieur à 0.4 suggère que les résultats sont moins fiables. 

▪ Matrice de Confusion 

La matrice de confusion est un tableau qui compare les classifications prévues par le 

modèle avec les classifications réelles. Elle présente les résultats sous forme de 

contingence entre les classes prévues et les classes réelles.La matrice de confusion permet 

de calculer des métriques spécifiques à chaque classe, comme la précision du producteur 

et de l’utilisateur, ainsi que d’identifier les erreurs de classification entre les différentes 

classes. 

▪ Précision du Producteur (ou Sensibilité) 

La précision du producteur (Eq.3) mesure la capacité du modèle à identifier correctement 

les pixels d'une classe particulière par rapport au nombre total de pixels qui appartiennent 

réellement à cette classe. 

 

Cette métrique indique combien de pixels réels d'une classe ont été correctement 

identifiés par le modèle. Une précision élevée du producteur signifie que le modèle est 

efficace pour détecter les pixels d'une classe donnée. 

▪ Précision de l’Utilisateur 

La précision de l'utilisateur (Eq.4) mesure la proportion de pixels correctement classifiés 

dans une classe par rapport au nombre total de pixels classifiés dans cette classe. 

 

Cette métrique indique combien de pixels classifiés dans une classe sont réellement de 

cette classe. Une précision élevée de l'utilisateur signifie que les pixels classifiés dans une 

certaine classe sont généralement corrects. L’évaluation de la précision des algorithmes 

(

4) 

(

3) 

(

2) 
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de classification à l'aide de ces métriques permet de mesurer la performance globale et 

spécifique des modèles. La précision globale et l'indice Kappa fournissent des aperçus 

généraux sur la qualité de la classification, tandis que la matrice de confusion et les 

mesures de précision du producteur et de l'utilisateur offrent des détails sur la 

performance pour chaque classe spécifique. Ensemble, ces métriques permettent une 

évaluation complète et approfondie des résultats de la classification, facilitant ainsi 

l’interprétation des données et la sélection du modèle le plus performant. Les cartes de 

classification obtenues sont comparées aux données de terrain ou aux ensembles de 

validation indépendants pour confirmer la précision des résultats. Cela permet de vérifier 

que les classifications reflètent fidèlement les conditions réelles sur le terrain. 

1.6. Choix de la meilleure classification 

1.6.1. Comparaison des performances 

Les performances des différents algorithmes sont comparées en fonction des métriques 

d’évaluation. L’algorithme qui fournit les meilleures valeurs de précision, rappel, F-

mesure, et autres métriques pertinentes est sélectionné comme le meilleur pour la 

classification. 

1.6.2. Analyse des erreurs 

Une analyse des erreurs est effectuée pour identifier les classes où les algorithmes 

présentent des faiblesses. Cette analyse aide à comprendre les limitations de chaque 

algorithme et à guider les ajustements nécessaires. 

1.6.3. Sélection de l’Algorithme Optimal 

L’algorithme offrant la meilleure performance globale, en tenant compte de la précision, 

de l’interprétabilité, et de la capacité à gérer des données complexes, est choisi pour la 

classification finale. 

2. Résultats 

2.1. Cartes d’Occupation du sol de Sine Kaloum issues de la classification par les 

algorithmes RF, SVM et CART 

L’analyse des cartes d’occupation du sol, produites à partir des images Sentinel-2 et les 

algorithmes de machine learning RF, CART et SVM nous renseigne sur la répartition 

spatiale des catégories d’occupation du sol dans la région de Sine Kaloum en 2024. Les 

résultats cartographiques montrent que huit (08) classes d’unités d’occupation du sol 

(zone marécageuse, mangrove, végétation naturelle, habitat, terre salée, agriculture, eau, 

et sols nus) sont représentées dans des proportions différentes en fonction de l’algorithme 

choisie. 
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Les superficies des différentes classes d'occupation du sol, selon les algorithmes utilisés, 

sont présentées dans le tableau 2.  La classe "Agriculture" domine dans la région de Sine 

Kaloum, avec des proportions de 73,88%, 65,61%, et 80,31% respectivement obtenues 

par les méthodes RF, CART et SVM. La classe "Habitat" maintient une proportion 

constante de 0,96% à travers toutes les classifications. 

Les zones marécageuses sont quasiment absentes dans les résultats obtenus avec 

l'algorithme SVM, ne représentant que 0,07% de la superficie. Les sols nus, en revanche, 

sont particulièrement bien représentés dans la classification produite par l'algorithme 

CART, atteignant 14,36%. Les terres salées sont moins fréquentes dans la classification 

générée par SVM, avec une proportion de 0,29%. Les autres classes, telles que l'eau, la 

mangrove, et la végétation naturelle, affichent des proportions similaires dans les 

différentes classifications. 

Tableau 2 : Superficies des classes d'occupation du sol de Sine Kaloum en 2024 

CLASSES SUPERFICIE (ha) PROPORTION (%) 

RF CART SVM RF CART SVM 

Eau 65533,598 65082,012 91535,06 2,78 2,76 3,88 

Mangrove 81921,087 78888,717 82517,06 3,47 3,35 3,50 

Habitat 22617,895 22617,895 22665,35 0,96 0,96 0,96 

Agriculture 1741803,76 1546749,03 1893337,09 73,88 65,61 80,31 

Végétation naturelle 206359,095 209559,262 204653,2 8,75 8,89 8,68 

Terres salées 20274,983 21426,266 6772,43 0,86 0,91 0,29 

Zones marécageuses 7523,437 72474,855 1565,884 0,32 3,07 0,07 

Sols nus 211585,112 340820,928 54572,89 8,97 14,46 2,31 

TOTAL 2357618,96 2357618,96 2357618,96 100 100 100 

 
 

 

2.1.1. SVM 

Les résultats révèlent que la classe "Agriculture" domine largement, couvrant 80,31% de 

la superficie totale, soit 1 893 337,09 hectares. Les autres classes se répartissent ainsi, p. 

la végétation naturelle occupe 8,68% (204 653,2 hectares), les plans d'eau 3,88% (91 

535,06 hectares), les mangroves 3,50% (82 517,06 hectares), les sols nus 2,31% (54 

572,89 hectares), les habitats 0,96% (22 665,35 hectares), les terres salées 0,29% (6 

772,43 hectares) et les zones marécageuses 0,07% (1 565,88 hectares). La figure 3 illustre 

la répartition des classes d’occupation du sol dans la région de Sine Kaloum, obtenue à 

partir de l'algorithme SVM. 

 

 

 

 



ANYASA-Juin 2025 

 

97 

 

 

 

Figure 3 : Occupation du sol de 2024 de Sine Kaloum par l’algorithme de Machine Learning 

SVM 

 

Il apparait clairement que l’agriculture est l’activité principalement dans cette zone qui 

constitue le bassin arachidier du Sénégal. Cependant, avec la surexploitation des terres 

agricoles, la productivité a beaucoup régressé. Aussi, on enregistre une évolution dans les 

pratiques cultures. L’agriculture, culture commerciale, était dominante. Aujourd’hui, on 

note une diversification agriculture avec des cultures vivrières (mil, maïs).  

2.1.2. CART 

Ici, la classe "Agriculture" reste dominante mais dans une proportion moindre de 65,61% 

(soit 1 546 749,03 hectares). Notons une augmentation significative de la représentation 

des sols nus, atteignant 14,46% (340 820,93 hectares). La végétation naturelle couvre 

8,89% (209 559,26 hectares), suivie des mangroves à 3,35% (78 888,72 hectares) et des 

zones marécageuses à 3,07% (72 474,86 hectares). Les plans d'eau, habitats et terres 

salées occupent respectivement 2,76% (65 082,01 hectares), 0,96% (22 617,90 hectares) 

et 0,91% (21 426,27 hectares). La figure 4 présente la répartition des classes d’occupation 

du sol obtenue avec l'algorithme CART. 
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Figure 4 : Occupation du sol de 2024 de Sine Kaloum par l’algorithme de Machine Learning 

CART 

 

2.1.3. RF 

La figure 5 montre la répartition des classes d'occupation du sol issue de l'algorithme RF. 

La classe "Agriculture" y est prépondérante avec 73,88% (soit 1 741 803,76 hectares). 

Les sols nus suivent avec 8,97% (211 585,11 hectares), puis la végétation naturelle avec 

8,75% (206 359,10 hectares). Les mangroves, les plans d'eau, les habitats, les terres 

salées et les zones marécageuses couvrent respectivement 3,47% (81 921,09 hectares), 

2,78% (65 533,60 hectares), 0,96% (22 617,90 hectares), 0,86% (20 274,98 hectares) et 

0,32% (7 523,44 hectares). 

 

 

 

 

 

 

 



ANYASA-Juin 2025 

 

99 

 

 

 

Figure 5 : Occupation du sol de 2024 de Sine Kaloum par l’algorithme de Machine Learning 

RF 

 

2.2. Validation des cartes 

Les résultats de la classification, sur la base des échantillons de validation, ont été soumis 

à une évaluation par l’analyse de la précision du producteur, la précision de l’utilisateur, 

la précision globale, le coefficient Kappa et la séparabilité des classes. 

2.2.1. Résultats de la Mission terrain 

L’évaluation de la précision des cartes d’occupation du sol a été effectuée en croisant les 

données issues de la télédétection et les observations terrain collectées à l’aide de 

KoboToolbox. Un total de 30 polygones géoréférencés a été échantillonné à travers les 

différentes classes d’occupation du sol, avec pour chaque classe des proportions 

différentes (Figure 6). 

Les résultats obtenus montrent une concordance générale satisfaisante entre la 

classification automatique et les observations de terrain. Les photos collectées, permettent 

de mieux illustrer les classes observées sur le terrain. 

 

 

 

R
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Figure 6 : Répartition par classe, des échantillons terrains pour la validation de l'occupation 

du sol 

             

2.2.2. Précision du producteur et de l’utilisateur 

Les résultats de la classification ont été évalués à l'aide d'une analyse de la précision post-

classification. Les valeurs de précision de l’utilisateur et du producteur pour les 

classifications obtenues avec les algorithmes SVM, RF, et CART ont été calculées et sont 

présentées dans le tableau 3. 

Tableau 3 :  Précision de l’utilisateur et du producteur de classification des images Sentinel 

2A par les algorithmes de machine Learning SVM, RF et CART 

 

 Précision du producteur (%) Précision de l'utilisateur (%) 

Classe F CART SVM RF CART SVM 

Eau 99,98 99,99 99,98 100 99,98 97,40 

Mangrove 100 99,98 99,74 99,97 99,98 99,94 

Habitat 100 100 100 100 100 100 

Agriculture 99,78 99,49 97,94 99,46 99,46 97,53 

Végétation 

naturelle 
98,89 98,89 97,34 99,53 99,03 94,55 

Terres salées 100 99,55 68,78 99,34 99,33 97,47 

Zones 

marécageuses 
89,55 91,04 86,57 100 93,85 77,33 

Sols nus 88,18 86,21 22,17 91,33 85,78 88,24 
 

Source : Données d’enquêtes 

La précision du producteur pour l'ensemble des classes varie entre 86% et 100% pour les 

algorithmes RF et CART. En revanche, elle est nettement plus faible pour l'algorithme 

SVM, oscillant entre 22% et 69% pour les classes "terres salées" et "sols nus", tandis 

qu'elle reste élevée, entre 86% et 100%, pour les autres classes. Notamment, la précision 

du producteur atteint un niveau particulièrement bas de 22,17% pour la classe "sols nus" 

lorsque l'algorithme SVM est utilisé. 
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La précision de l’utilisateur suit un modèle similaire, avec des valeurs comprises entre 

91% et 100% pour l’algorithme RF, et entre 85% et 100% pour l’algorithme CART. En 

revanche, cette précision est inférieure pour l'algorithme SVM, variant de 88% à 50% 

pour les classes "Plantations forestières (reboisement)", "forêt", "palmier à huile" et 

"aménagement agricole". La précision la plus faible observée pour l’utilisateur est de 

77,33% pour la classe "zone marécageuse" avec l'algorithme SVM. 

Bien que l'on note de légères différences entre la précision du producteur et celle de 

l’utilisateur, les pixels ont été correctement classifiés pour chacune des classes identifiées 

par les algorithmes CART, SVM, et RF (valeurs >85%), avec une précision modérée pour 

SVM. 

Un examen approfondi des erreurs de classification (Tableau 4) a révélé des confusions 

notables dans certaines classes, manifestées par des erreurs d’omission et de commission. 

Les classes "eau", "mangrove", "habitat", "agriculture", et "végétation naturelle" sont 

parfaitement classifiées avec les trois algorithmes (erreurs d’omission et de commission 

<6%). Toutefois, des confusions importantes sont apparues entre les classes "terres 

salées", "zones marécageuses", et "sols nus" pour l'algorithme SVM. 

Tableau 4 : Erreurs d’omission et de commission obtenues par les algorithmes de machine 

Learning SVM RF et CART 

          

 
 Erreur d'omission (%) Erreur de commission (%) 

CLASSE RF CART SVM RF CART SVM 

Eau 0,02 0,01 0,02 0,00 0,02 2,60 

Mangrove 0 0,02 0,26 0,03 0,02 0,06 

Habitat 0 0,00 0,00 0,00 0,00 0,00 

Agriculture 0,22 0,51 2,06 0,54 0,54 2,47 

Végétation naturelle 1,11 1,11 2,66 0,47 0,97 5,45 

Terres salées 0,00 0,45 31,22 0,66 0,67 2,53 

Zones marécageuses 10,45 8,96 13,43 0,00 6,15 22,67 

Sols nus 11,82 13,79 77,83 8,67 14,22 11,76  

Les erreurs d’omission les plus importantes ont été observées pour l'algorithme SVM, 

avec des taux variants entre 31% et 77,83%, ce qui correspond à une précision du 

producteur allant de 69% à 22,17%. L'erreur d’omission la plus élevée a été observée 

dans la classe zone marécageuse avec une valeur de 22,67%, soit une précision de 

l’utilisateur estimée à 77,33%. 

2.2.3. Précision globale et Kappa 

Le Tableau 5 présente la précision globale obtenue pour les classifications réalisées avec 

les algorithmes de machine learning RF, CART, et SVM, laquelle correspond au 
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pourcentage de pixels correctement classifiés par rapport au total de pixels dans la 

matrice de confusion. 

Les résultats montrent une précision globale exceptionnelle, avec des taux variants entre 

97,56% et 99,70%. Il est important de souligner que l'algorithme RF a obtenu la précision 

la plus élevée, atteignant 99,70%, surpassant ainsi SVM (97,56%) et CART (99,59%). 

Les valeurs de l'indice Kappa (K) sont également significatives, s'élevant à 0,96 pour 

SVM, 0,994 pour CART, et 0,996 pour RF. Ces valeurs, toutes supérieures à 0,81, 

indiquent une excellente évaluation et une forte concordance entre la carte d'occupation 

du sol dérivée des images Sentinel-2A et les données de validation. Elles reflètent un 

accord quasi parfait, démontrant ainsi l'efficacité des algorithmes de machine learning 

pour la classification des unités d'occupation du sol en milieu urbain. 

    Tableau 5 : Précision globale et Kappa des différentes classifications 

    

AML KAPA Précision globale (%) 

RF 0,99595261 99,70 

CART 0,99444181 99,59 

SVM 0,96662459 97,56 

 
 

Cette méthodologie de validation terrain, associée à l’analyse des erreurs de 

classification, montre l'importance d'un processus itératif dans l'évaluation de la 

cartographie par télédétection. Bien que les résultats soient globalement satisfaisants, des 

améliorations sont possibles grâce à l’intégration de nouvelles technologies et à une plus 

grande flexibilité dans la gestion des données multitemporelles. 

2.3. Carte d’occupation du sol de Sine Kaloum de 2024 

La Figure 7 présente la carte résultant de la classification de Sine Kaloum pour l'année 

2024 à l'aide de l'algorithme de Machine Learning. 
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Figure 7 : Carte d’occupation du sol de Sine Kaloum de 2024 

 

L’étude de la distribution des unités d’occupation du sol obtenues nous révèle que la 

surface de Sine Saloum est occupée à 66,001% par la végétation et à 33,99% de non-

végétation (Milieu urbain, eau) (Tableau 6). 

       Tableau 6 : Distribution des classes d’occupation du sol du Sine Kaloum en 2024 

       

 
Classes Superficie (ha) Proportion (%) 

Eau 65533,6 2,78 

Mangrove 81921,1 3,47 

Habitat 22617,9 0,96 

Agriculture 1741803,8 73,88 

Végétation naturelle 206359,1 8,75 

Terres salées 20274,9 0,86 

Zones marécageuses 7523,4 0,32 

Sols nus 211585,1 8,97 

Total 2357618,9 100,00  
 

La répartition des classes d'occupation du sol dans la région de Sine Kaloum (Figure 8) 

révèle une prédominance marquée de la classe "Agriculture", qui occupe 73,88% de la 

superficie totale, soit 1 741 803,76 hectares. En deuxième position, les sols nus couvrent 

R

F 
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8,97% de la surface, équivalant à 211 585,11 hectares, suivis de près par la végétation 

naturelle, qui représente 8,75% de la superficie totale, soit 206 359,10 hectares. 

Les autres classes, incluant les mangroves, les plans d'eau, les habitats, les terres salées et 

les zones marécageuses, couvrent respectivement 3,47% (81 921,09 ha), 2,78% (65 

533,60 ha), 0,96% (22 617,90 ha), 0,86% (20 274,98 ha) et 0,32% (7 523,44 ha) de la 

superficie totale.  

Figure 8 :  Distribution des unités d'occupation du sol dans le sine saloum en 2024 

         

3. Discussion 

Dans cette étude sur la classification des occupations du sol dans la région de Sine 

Kaloum, l'utilisation de Google Earth Engine (GEE) pour l'analyse des images Sentinel-2 

s'avère particulièrement justifiée. GEE est une plateforme puissante qui permet un 

traitement à grande échelle des données géospatiales, offrant des capacités de calcul en 

cloud qui facilitent l'analyse de volumes massifs d'images sans nécessiter une 

infrastructure locale complexe. Selon N. Gorelick et al. (2017, p. 18‑27), GEE a 

révolutionné l'accès et l'analyse des données de télédétection, rendant possible l'exécution 

d'analyses avancées de manière rapide et efficace, ce qui est essentiel pour notre étude. 

L'application de techniques de machine learning, telles que RF, CART et SVM, offre des 

avantages indéniables en matière de précision et d'efficacité (M. A. C. NJEUGEUT et al., 

2023, p. 310‑32). Ces algorithmes permettent de capturer des relations complexes entre 

les variables d'entrée et les classes cibles, améliorant ainsi la performance des 

classifications par rapport aux méthodes traditionnelles reposant sur des seuils fixes ou 

des approches par règles (X. Liu et al., 2018, p. 227‑39). Les images Sentinel-2 

constituent un choix approprié en raison de leur résolution spatiale et temporelle élevée, 

ce qui est bénéfique pour la surveillance de l'occupation du sol. Avec leurs 13 bandes 

spectrales, ces images permettent une distinction fine entre les différentes classes 

d'occupation, comme le montre l’étude de M. Drusch et al. (2012, p. 25‑36). 

Comparativement, d'autres sources de données, comme Landsat, peuvent être limitées par 
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une résolution inférieure et un intervalle de revisite moins fréquent (D. P. Roy et al., 

2019, p. 111-254). 

Les résultats de classification, obtenus à l'aide des algorithmes Random Forest (RF), 

CART et SVM, montrent des variations significatives en termes de précision et 

d'efficacité, avec une précision globale variant de 97,56 % à 99,70 %. RF affiche la 

meilleure performance à 99,70 %, en accord avec les travaux de M. A. C. NJEUGEUT et 

al. (2023, p. 310‑32) et L. Breiman (2001, p. 5‑32), qui ont également observé une 

performance élevée des algorithmes RF et CART pour des classifications similaires en 

télédétection. 

Cependant, l'analyse des performances du SVM révèle des défis notables. Bien que ses 

résultats soient globalement acceptables, SVM se montre moins robuste, en particulier 

pour des classes complexes comme "sols nus", où la précision atteint seulement 22,17 %. 

Cette difficulté est corroborée par des études telles que celle de W. Zhang et al. (2019, p. 

111-465), qui indiquent que les SVM peuvent rencontrer des problèmes de classification 

en raison de la variabilité spatiale des données. Des recherches menées en Afrique 

confirment également ces défis dans l'utilisation de SVM pour des classes d'occupation 

du sol ayant des caractéristiques spectrales similaires (M. A. C. Njeugeut et al., 2023, p. 

310‑32; M. A. Brovelli, Y. Sun, et V. Yordanov, 2020, p. 580). 

Les valeurs de l'indice Kappa, supérieures à 0,81 pour tous les algorithmes, attestent d'une 

excellente concordance entre les cartes dérivées et les données de validation. Les valeurs 

élevées de Kappa sont indicatives d'une classification fiable (G. M. Foody, 2002, p. 

185‑201). Toutefois, nos résultats suggèrent qu'une optimisation des paramètres du SVM, 

pourrait améliorer sa valeur Kappa comme le notent plusieurs auteurs (M. A. C. Njeugeut 

et al., 2023, p. 310‑32; P. Thanh Noi et M. Kappas, 2017, p. 18). 

L'analyse de la précision du producteur et de l'utilisateur met en lumière les forces et 

faiblesses de chaque algorithme. RF et CART affichent des taux de précision utilisateur 

plus élevés, indiquant une meilleure gestion de la diversité des classes, comme observé au 

Sénégal (B. Solly, E. H. B. Dieye, et O. Sy, 2020, p. 35‑49). En revanche, SVM présente 

des disparités significatives, notamment en ce qui concerne certaines classes, avec des 

confusions notables entre "terres salées", "zones marécageuses" et "sols nus". Plusieurs 

travaux suggèrent que l'amélioration de la qualité des données d'entrée ou l'application de 

techniques de prétraitement pourraient atténuer ces erreurs (D. Lu et Q. Weng, 2007, p. 

823‑70). 

En somme, cette étude enrichit la littérature sur la classification de l'occupation du sol en 

Afrique en fournissant des comparaisons directes entre plusieurs algorithmes de machine 

learning et en mettant en lumière les défis spécifiques liés à l'application de SVM. Les 

résultats encouragent également des recherches futures sur l'optimisation des algorithmes 

et l'amélioration de la qualité des données d'entrée pour des classifications plus précises et 

fiables. L'utilisation de Google Earth Engine, associée à des techniques de machine 



ANYASA-Juin 2025 

 

106 

 

 

 

learning et aux images Sentinel-2, constitue une approche robuste et efficace pour la 

classification de l'occupation du sol, ouvrant la voie à des études futures sur l'optimisation 

des processus analytiques dans des contextes géographiques variés. 

Conclusion 

Cette étude a évalué la performance de trois algorithmes de classification de machine 

learning  Random Forest (RF), Classification and Regression Trees (CART), et Support 

Vector Machines (SVM) pour cartographier l'occupation du sol dans la région de Sine 

Kaloum à partir d'images Sentinel-2A. Les résultats montrent que les algorithmes RF et 

CART offrent des performances globalement supérieures par rapport à SVM, avec des 

précisions globales atteignant respectivement 99,70% et 99,59%, tandis que SVM obtient 

une précision légèrement inférieure de 97,56%. Ces performances élevées, mesurées par 

les indices Kappa supérieurs à 0,81, témoignent d'une excellente concordance entre les 

cartes d'occupation du sol générées et les données de validation. 

La précision du producteur et de l’utilisateur varie selon les algorithmes, les meilleurs 

résultats étant obtenus avec RF et CART. En revanche, SVM présente des défis 

particuliers, notamment une faible précision pour les classes "sols nus" et des erreurs de 

commission plus fréquentes pour certaines catégories. Les erreurs de classification, 

surtout pour les classes de terres salées et de zones marécageuses, mettent en évidence les 

limites de SVM dans la gestion de classes avec des caractéristiques spectrales similaires. 

Les résultats indiquent que, bien que tous les algorithmes étudiés fournissent une 

classification fiable et précise, RF et CART se distinguent par leur robustesse et leur 

précision globale. Ces algorithmes sont donc recommandés pour les applications de 

cartographie de l'occupation du sol dans des contextes similaires. Néanmoins, 

l'intégration de techniques de prétraitement des données ou l'optimisation des paramètres 

de SVM pourraient améliorer ses performances dans des classifications complexes. 

Cette recherche démontre l'efficacité des techniques de machine learning pour la 

classification des données de télédétection et fournit des recommandations pour les choix 

d'algorithmes en fonction des caractéristiques spécifiques des classes d'occupation du sol. 

Les futures études pourraient explorer des approches combinées ou hybrides pour 

améliorer encore la précision et la robustesse des classifications dans des environnements 

variés. 

En conclusion, cette étude souligne l'efficacité des algorithmes RF et CART pour la 

classification de l'occupation du sol à Sine Kaloum, tandis que SVM nécessite des 

ajustements spécifiques pour optimiser sa performance. Des recherches futures devraient 

se concentrer sur l'amélioration des techniques de classification, en particulier pour les 

classes où des confusions sont fréquentes. 
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